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Introduction

Introduction

As we saw in Psychology 310, when we test any statistical hypothesis, we
realize that our decision may be wrong.

We design a procedure to control the probability of false rejection at α.

Unfortunately, if our data analysis involves many hypothesis tests, the
probability of at least one Type I error increases rather sharply with the
number of tests.
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Introduction Probability of At Least One Type I Error

Introduction
Probability of At Least One Type I Error

For example, if there are m tests and they are independent, and each one
is performed with a Type I error rate of α, and all hypotheses are actually
true, the probability of at least one Type I error is

Pr(At Least One Error) = 1− Pr(No Errors)

= 1− Pr(All Decisions Correct)

= 1− (1− α)m (1)

Below is code to create a plot of the probability of at least one error.

> curve(1 - (1 - 0.05)^x, 1, 100, xlab = "Number of Tests (m)", ylab = "Pr(At Least One Type I Error)",

+ col = "red")
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Introduction
Probability of At Least One Type I Error
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Some Key Concepts

Some Key Concepts

In this section, we discuss some key “Organizing Concepts” useful for
discussing the problem of multiple hypothesis testing

We begin by assuming that some set of null hypotheses is of primary
interest, and that we have a set of observations with a joint distribution
depending on parameters relevant to the hypothesis set, and that the
hypotheses limit the values of the parameters in some way.

For example, suppose we have the means of J populations, i.e.,
µ1, µ2, . . . , µJ .

Let δij stand for the difference between µi and µj . Let δijk stand for the
set of differences among δi , δj , and δk .

Suppose the hypotheses are written Hijk... : δijk... = 0, indicating that all
subscripted means are equal.

For example, H1234 is shorthand for the hypothesis µ1 = µ2 = µ3 = µ4.
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Some Key Concepts Primary Hypotheses

Some Key Concepts
Primary Hypotheses

The primary hypotheses in a testing situation are the elements of the
universal set of all hypotheses of interest.
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Some Key Concepts Closure

Some Key Concepts
Closure

The closure of a set of hypotheses is the collection of the original set plus
all distinct hypotheses formed by intersections of the hypotheses in the
original set.

For example, if the original set is A = {H12,H13}, the closure of A is H123,
since if µ1 = µ3 and µ2 = µ3, then µ1 = µ2 = µ3.

The hypotheses included in an intersection are called the components of
the intersection hypothesis.

Note that technically, an intersection is a component of itself. So we
introduce the notion of proper component, representing any other
component of an intersection.

In the preceding example, the proper components (so long as they are
included in the primary hypotheses) of H123 are H12,H13,H23.

Note that the truth of the closure of a set of hypotheses implies the truth
of all its proper components.
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Some Key Concepts Hierarchical Sets and Minimal Hypotheses

Some Key Concepts
Hierarchical Sets and Minimal Hypotheses

Any set of hypotheses in which some are proper components of others will
be called a hierarchical set.

A closed set is therefore hierarchical. The top of the hierarchy is the
intersection of all the hypotheses.

The bottom of the hierarchy consists of the sets that have no proper
components. These are called the minimal hypotheses.

A mimimal hypothesis is also one that does not imply the truth of any
other hypotheses in the set.
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Some Key Concepts Families

Some Key Concepts
Families

A key decision in analyzing data is to decide on the set of hypotheses to
consider as a family.

A family is a set for which significance statements and related error rates
will be controlled jointly.

Note: In the early multiple comparisons literature (e.g., Ryan, 1959,
1960), the term “experiment” was used instead of “family.”

As research grew more complex, the use of the term “experiment” was
found to be limiting. Consider, for example, factorial experiment or a large
survey.

Because of the inverse relationship between control of Type I errors and
power, it would be unreasonable to expect the probability of a Type I error
to be controlled over the entire experiment at conventional levels like 0.05.
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Some Key Concepts Families

Some Key Concepts
Families

Even within the same data set, different families may be analyzed for
different reasons. For example, suppose you have data for 50 schools. You
may be interested in all the pairwise comparisons among the schools. On
the other hand, the principal of school A may only be interested in the
family of pairwise comparison of her school with the other 49.
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Some Key Concepts Type I Error Control

Some Key Concepts
Type I Error Control

Strong error rate control methods control the Type I error rates (of various
kinds) for any combination of true and false null hypotheses in a family.

Weak error rate control methods control the various Type I error rates only
when all the null hypotheses in a family are simultaneously true.

We will concentrate on methods with strong control.
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Some Key Concepts Type I Error Control

Some Key Concepts
Type I Error Control

The error rate per hypothesis, often called the error rate per comparison or
PCER, is the Type I error rate for each individual hypothesis test.
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Some Key Concepts Type I Error Control

Some Key Concepts
Type I Error Control

The error rate per family, or PFER, is the expected number of false
rejections in the family.
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Some Key Concepts Type I Error Control

Some Key Concepts
Type I Error Control

The familywise error rate (FWER) is the probability of at least one Type I
error in the family of tests.
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Some Key Concepts Type I Error Control

Some Key Concepts
Type I Error Control

Let Vm stand for the number of Type I errors committed in a family of
tests, and Rm be the number of rejected hypotheses. The generalized
familywise error rate gFWER(k) = Pr(Vm > k), or chance of at least
(k + 1) false positives. The special case k = 0 corresponds to the usual
family-wise error rate, FWER.
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Some Key Concepts Type I Error Control

Some Key Concepts
Type I Error Control

The False Discovery Rate (FDR) is (Vm/Rm), the long run proportion of
rejections that are Type I errors.
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Some Key Concepts Power

Some Key Concepts
Power

Just as there are multiple ways of looking at Type I error rates, there are
several conceptualizations of the notion of power in multiple hypothesis
testing. In the context of pairwise mean comparisons, these have been
referred to as

1 Any-pair power. The probability of rejecting at least one false null
hypothesis.

2 Per-pair power. The average probability of rejecting a false null
hypothesis.

3 All-pairs power. The probability of rejecting all false null hypotheses
in the set.
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Some Key Concepts p-Value and Adjusted p-Value

Some Key Concepts
p-Value and Adjusted p-Value

Many scientists now report p-values rather than simply giving a test
statistic and the result of the hypothesis test.

Extension of the idea of a p-value to multiple testing is not straightforward.

Some authors have championed the use of the adjusted p-value, which is
the value of the error rate for the entire procedure that, if it had been
employed on the entire set of test statistics under consideration, would
have resulted in the null hypothesis for a particular hypothesis test barely
rejecting.
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Some Key Concepts Closed Test Procedures

Some Key Concepts
Closed Test Procedures

The most powerful procedures designed to control FWER are in the class
of closed test procedures.

Assume a set of hypotheses of primary interest, add hypotheses as
necessary to form the closure of this set, and recall that the closed set
consists of a hierarchy of hypotheses.

The closure principle is as follows: A hypothesis is rejected at level α if
and only if it and every hypothesis directly above it in the hierarchy (i.e.
every hypothesis that includes it in an intersection and thus implies it) is
rejected at level α.
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Some Key Concepts Closed Test Procedures

Some Key Concepts
Closed Test Procedures

Consider a hypothesis set involving 4 means, with the highest hypothesis
in the hierarchy H1234 and the six hypotheses Hij , i 6= j = 1, 2, 3, 4 as the
minimal hypotheses.

No hypotheses below H1234 can be rejected unless H1234 is rejected.
Suppose H1234 is rejected. Then H12, for example, cannot be rejected
unless H124, H123 are rejected.

But since the intersection hypothesis H12 ∩ H34 is also implied by H1234

yet is formally distinct from it, this intersection hypothesis ranks below
H1234 but above H12.

So the intersection hypothesis H12 ∩ H34 must be tested and rejected at
the α level before H12 is tested by itself at the α level. It is only when the
final test is rejected that one declares µ1 and µ2 to be significantly
different.
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Some Key Concepts Closed Test Procedures

Some Key Concepts
Closed Test Procedures

The proof that Closed Test Procedures control FWER is straightforward,
and is given in a Biometrika article by Marcus et al.(1976). Let’s consider
the proof in connection with the following situation. There are 4 means,
and µ1 = µ2 = µ3 6= µ4. In this case, HP = H123 is the closure of all true
hypotheses. the intersection of all Hij that are true.

Consider every possible true situation, each of which can be
represented as the intersection of null hypotheses and their
alternatives. Only one of these can be the true one. In our current
example, this is

HQ = H12 ∩ H13 ∩ H23 ∩ H14 ∩ H24 ∩ H34

Now, consider HT , the closure of the Hij that are true.

HT = H12 ∩ H13 ∩ H23

.

The probability under a closed testing procedure of rejecting HT is
≤ α. Why? (continued on next slide)

James H. Steiger (Vanderbilt University) General Approaches 22 / 42



Some Key Concepts Closed Test Procedures

Some Key Concepts
Closed Test Procedures

All true null hypotheses in the primary set are contained in HQ , and
none of them can be rejected unless that configuration is rejected.
Let A be the event that all hypotheses in HQ ranking above HT and
including elements of HT are rejected. Clearly Pr(A) ≤ 1. Let B be
the event that HT is rejected. Since B can only occur when A has
already occurred, B = A ∩ B, and so
Pr(B) = Pr(A ∩ B) = Pr(A) Pr(B|A). But Pr(B|A) = α, since once
one arrives at the point of testing HT , that test is performed at the α
level.

Consequently Pr(B) ≤ α. And since rejection of any primary
hypothesis requires event B, the probability of one or more such
rejections must be less than or equal to Pr(B), and so must also be
less than or equal to α.

In other words, when working through the hierarchy, when one encounters
the first hypothesis at the top of the hierarchy of true hypotheses, the
probability of rejecting it is ≤ α. If it is rejected, then a Type I error has
occurred. If not, no more tests below that point in the hierarchy can be
done. So the Type I error rate at the head of the hierarchy is also the
FWER.
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Methods Based on Ordered p-Values

Methods Based on Ordered p-Values

A finite set of minimal hypotheses Hi , i = 1, . . . ,m is to be tested.
Corresponding to the Hi are test statistics Ti (or their absolute values)
such that pi corresponding to each hypothesis may be computed.

Assume that the pi are ordered such that p1 ≤ p2 ≤ . . . ≤ pm. With the
exception of the methods in the the subsection on False Discovery Rate,
these methods provide strong FWER control.
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Methods Based on Ordered p-Values
Methods Based on the First-Order Bonferonni Inequality

The Simple Bonferonni Method.

The first-order Bonferroni inequality states that, for events Ai , i = 1, . . . , n,

Pr

(
m⋃
i=1

Ai

)
≤

m∑
i=1

Pr(Ai ) (2)

This inequality is the basis for several general methods.
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Methods Based on Ordered p-Values Methods Based on the First-Order Bonferonni Inequality

Methods Based on Ordered p-Values
Methods Based on the First-Order Bonferonni Inequality

The simple method is, reject Hi if pi ≤ αi , where
∑m

i=1 αi = α.

This method controls FWER at or below α.

Usually, all αi are set equal to α/m, a procedure sometimes called the
unweighted simple Bonferroni method.

Of course, with this method, power suffers increasingly as m becomes
large.
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Methods Based on Ordered p-Values
Methods Based on the First-Order Bonferonni Inequality

Holm’s Sequentially Rejective Bonferonni Method

The unweighted method is as follows. At the first stage, H1 is rejected if
p1 ≤ α/m.

If H1 is not rejected, all subsequent hypotheses are accepted without
further testing.

If H1 is rejected, H2 is tested at the α/(m − 1) level. If H2 is not rejected,
all subsequent hypotheses are accepted without further testing.

The procedure continues, with the ith test performed at the α/(m− i + 1)
level, until the first non-rejection occurs.
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Methods Based on Ordered p-Values Methods Based on the First-Order Bonferonni Inequality

Methods Based on Ordered p-Values
Methods Based on the First-Order Bonferonni Inequality

Proof.

First imagine all m hypotheses are true, and remember that an acceptance
can never be followed by a rejection with this procedure. So, if there is
going to be any incorrect rejection, it has to occur on the first test of a
true hypothesis, because otherwise there will be no further tests.

So if all hypotheses are true, the probability of at least one rejection is the
probability of getting a rejection on the first test, which is α/m. What
happens after that is irrelevant to the FWER, because all patterns of
subsequent results will fit the definition of a Familywise Error having
occurred. (continued on next slide)
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Methods Based on Ordered p-Values
Methods Based on the First-Order Bonferonni Inequality

Now imagine that there are k ≤ m true null hypotheses in the collection of
m hypotheses to be tested. Suppose k = m − 1. Then the first true
hypothesis will be tested in position 1 or 2, and so the probability of a
Familywise Error can be no more than α/(m − 1).

If k = m − 2, the first true hypothesis will be tested in position 1, 2, or 3
and so the probability of a Familywise Error can be no more than
α/(m − 2), etc.

If there is only one true null hypothesis, and it is tested last, the
probability of a rejection is α.

This completes the proof.
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Methods Based on Ordered p-Values
Methods Based on the First-Order Bonferonni Inequality

An Enhancement for Independent (and some Dependent) Tests.

If tests are independent, α/m may be replaced by 1− (1− α)1/m, which is
always greater than α/m.

For certain other classes of tests that are positive orthant dependent, this
enhancement may also be applied. This includes the set of pairwise
two-sided t-tests in a 1-way ANOVA layout.
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Methods Based on Ordered p-Values
Methods Based on the Simes Equality

If X is a continuous test statistic based on an assumed null distribution,
having a continuous cumulative distribution F , then F has a Uniform(0,1)
distribution if the null hypothesis is true. If you order m observed test
statistics x1:m, you can order their corresponding cumulative probabilities
ui :m. Simes proved that if the X s are independent then for a value α
between 0 and 1,

Pr (ui :m ≥ iα/m, i = 1, . . . ,m) = 1− α (3)
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Methods Based on Ordered p-Values
Methods Based on the Simes Equality

Hochberg’s Sequential Step-Up Procedure.

Order the m tests in terms of their p values, with p1 the smallest and pm

the largest.

Choose a FWER α. If pm ≤ α, reject all hypotheses.

If pm > α, compare pm−1 to α/2, and if pm−1 ≤ α/2 reject all m − 1
remaining hypotheses.

If pn−1 > α/2, compare pn−2 to α/3, etc.

An alternative way of viewing this process is that one rejects the subset of
the (ordered) hypotheses H1,H2, . . . ,Hk , where

k = max

{
i : pi ≤

α

m − i + 1

}
(4)
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Methods Based on Ordered p-Values
Methods Controlling the False Discovery Rate

As articulated by Benjamini and Hochberg (1995) in the quote below, if
there are a lot of rejections expected in a set of m tests, control of FWER
may not be feasible, because of its damaging effect on power.

(b) Classical procedures that control the FWER in the strong
sense, at levels conventional in single-comparison problems, tend
to have substantially less power than the per comparison
procedure of the same levels.

(c) Often the control of the FWER is not quite needed. The
control of the FWER is important when a conclusion from the
various individual inferences is likely to be erroneous when at
least one of them is. This may be the case, for example, when
several new treatments are competing against a standard, and a
single treatment is chosen from the set of treatments which are
declared significantly better than the standard. However, a
treatment group and a control group are often compared by
testing various aspects of the effect (different end points in
clinical trials terminology). The overall conclusion that the
treatment is superior need not be erroneous even if some of the
null hypotheses are falsely rejected.
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Methods Based on Ordered p-Values Methods Controlling the False Discovery Rate

Methods Based on Ordered p-Values
Methods Controlling the False Discovery Rate

The Benjamini-Hochberg method is as follows. Suppose there are m null
hypotheses, and, unknown to the experimenter, m0 are true. The following
method controls FDR at or below αm0/m (which of course is less than or
equal to α).

Consider again the ordered p values p1 ≤ p2 ≤ . . . ≤ pm. Reject the set of
hypotheses H1,H2, . . .Hk for which

k = max

{
i : pi ≤

i

m
α

}
(5)
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An Example

An Example

As discussed in Benjamini and Yekutieli (2001), Needleman et al (New
England Journal of Medicine 300 689–695) studied the neuropsychologic
effects of unidentified childhood exposure to lead by comparing various
psychological and classroom performances between two groups of children
differing in the lead level observed in their shed teeth. While there is no
doubt that high levels of lead are harmful, Needleman’s findings regarding
exposure to low lead levels, especially because of their contribution to the
Environmental Protection Agencys review of lead exposure standards, are
controversial. The study was attacked on the ground of methodological
flaws, because Needleman et al. analyzed three separate families of
“endpoints” in their study (and the p-values observed):

1 Teacher’s Behavioral Ratings (0.003,0.05,0.05,0.14,
0.08,0.01,0.04,0.01,.050,0.003,0.003)

2 WISC scores (0.04,0.05,0.02,0.49,0.08,0.36,0.03,
0.38,0.15,0.90,0.37,0.54)

3 Verbal Processing and Reaction Time scores.
(0.002,0.03,0.07,0.37,0.90,0.42,0.05,0.04, 0.32,0.001,0.001,0.01)
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An Example

An Example

We abbreviate the 3 families as TBR, WISC, and RT R can sort the
values:

> TBR <- sort(c(0.003, 0.05, 0.05, 0.14, 0.08, 0.01, 0.04, 0.01, 0.05, 0.003,

+ 0.003))

> WISC <- sort(c(0.04, 0.05, 0.02, 0.49, 0.08, 0.36, 0.03, 0.38, 0.15, 0.9, 0.37,

+ 0.54))

> RT <- sort(c(0.002, 0.03, 0.07, 0.37, 0.9, 0.42, 0.05, 0.04, 0.32, 0.001, 0.001,

+ 0.01))

> TBR

[1] 0.003 0.003 0.003 0.010 0.010 0.040 0.050 0.050 0.050 0.080 0.140

> WISC

[1] 0.02 0.03 0.04 0.05 0.08 0.15 0.36 0.37 0.38 0.49 0.54 0.90

> RT

[1] 0.001 0.001 0.002 0.010 0.030 0.040 0.050 0.070 0.320 0.370 0.420

[12] 0.900
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An Example

An Example

Suppose we process the 3 families separately, and set FWER to α = 0.05
for each of the 3 families. If we use the simple Bonferroni procedure, how
many rejections do we get?

> Bonf.reject <- function(pvalues, alpha) {
+ return(sort(pvalues) <= alpha/length(pvalues))

+ }
> Bonf.reject(TBR, 0.05)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> Bonf.reject(WISC, 0.05)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE

> Bonf.reject(RT, 0.05)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE
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An Example

An Example

The Holm step-down and the Hochberg step-up procedures that control
FWER help a bit in this case.

> Holm.reject <- function(pvalues, alpha) {
+ pvalues <- sort(pvalues)

+ m <- length(pvalues)

+ results <- rep(FALSE, m)

+ crits <- alpha/(m:1)

+ for (i in 1:m) if (pvalues[i] <= crits[i])

+ results[i] <- TRUE else break

+ return(results)

+ }
> Hochberg.reject <- function(pvalues, alpha) {
+ pvalues <- sort(pvalues)

+ m <- length(pvalues)

+ results <- rep(TRUE, m)

+ for (i in m:1) if (pvalues[i] <= alpha/(m - i + 1))

+ break else results[i] <- FALSE

+ return(results)

+ }
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An Example

An Example

Holm’s method the same pattern of rejections as Hochberg’s, in this case.

> Holm.reject(TBR, 0.05)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> Holm.reject(WISC, 0.05)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE

> Holm.reject(RT, 0.05)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE

> Hochberg.reject(TBR, 0.05)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> Hochberg.reject(WISC, 0.05)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE

> Hochberg.reject(RT, 0.05)

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE
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An Example

An Example

A point of contention with respect to the article was the choice by the
authors to analyze 3 separate families.

Some authors argued that all tests should have been combined and
analyzed as one family.

With that approach, only two hypotheses would have been rejected.

> ALL.FAMILIES <- c(TBR, WISC, RT)

> Hochberg.reject(ALL.FAMILIES, 0.05)

[1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[34] FALSE FALSE
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An Example

An Example

On the other hand, since the family is now quite large, encompassing 35
tests, it may make more sense at this point to control the FDR rather than
the FWER. We write a function to implement the method.

> FDR.reject <- function(pvalues, alpha) {
+ pvalues <- sort(pvalues)

+ m <- length(pvalues)

+ results <- rep(TRUE, m)

+ for (i in m:1) if (pvalues[i] <= (i * alpha/m))

+ break else results[i] <- FALSE

+ return(results)

+ }

Let’s try it out!
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An Example

An Example

> FDR.reject(ALL.FAMILIES, 0.05)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[34] FALSE FALSE

Now 9 hypotheses are rejected when the combined families are processed
as a unit. If we go back and reanalyze the individual families while
controlling the false discovery rate, we find that there are 5 significant
differences in the TBR family and 4 in the RT family.
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